ρ⁰ production in UPCs: current and future target fragmentation studies

Spencer Klein, LBNL

- ρ⁰ production with nuclear breakup
 - Factorization, and what it means
- ρ^0 & ρ' (& some J/ ψ): what we know
- Future prospects

synonyms for incoherence:
unintelligibility, incoherency, inconsistency,
disjointedness, incongruity, illogicality, confusion,
nonsense, rambling, insanity

The ρ^0 seen in STAR

- **2002**: $1^{st} \rho^0$ photoproduction measurement
 - Main trigger requires neutrons in both ZDCs
 - "Topological" trigger did not require ZDCs, but efficiency was hard to evaluate
 - ◆ Few hundred events; proof of principle
 - ρ^0 + direct pp
 - ◆ 130 GeV AuAu Cross-section matched Glauber calculation
- 2008 ρ⁰ production in 200 GeV AuAu
 - Separated coherent and incoherent components
 - → Different do/dt spectra
 - Incoherent visible at large t
 - s-channel helicity conservation holds
- 2010: 62.4 GeV cross-section
 - Matched Glauber calculation

Incoherent ρ^0 in the 2017 STAR analysis

- 294,000 'exclusive' $\pi^+\pi^-$ with $p_T < 100 \text{ MeV/c}$
- Exp(-bt) is no longer an adequate for the incoherent component
- A dipole form factor is a good fit

$$\frac{d\sigma}{dt} = \frac{A/Q_0^2}{(1+|t|/Q_0^2)^2}$$

- ◆ 0.2 GeV² < t < 0.45 GeV²
- Matches expectation for recoil from a single nucleon
- \bullet Q₀² = 0.099 (GeV/c)²
- Is single-nucleon recoil appropriate at low t?
 - Nucleon emission energetically impossible
 - Photon emission is via shell model states
- We don't know what to expect at low t

Coherent ρ^0 in the 2017 STAR analysis

- Found by subtracting the incoherent ρ⁰ fit, extrapolated down to zero
 - Energy conservation requires extrapolation to fail as t-> 0
- Several diffractive minima are visible
- Spectrum is the convolution of the photon p_T, Pomeron p_T and detector resolution
 - ◆ 2-d vectors
 - Photon p_T and Pomeron p_T directions are correlated due to the bi-directional interference

The 2017 STAR mass spectrum

- Mass spectra fit by ρ^0 + direct $\pi\pi$ + ω -> $\pi\pi$
 - ◆ All of these states should be J^{PC}=1⁻⁻, so they interfere
 - ◆ ∞ required for acceptable fit
 - Ratios & phase angle consistent with low-energy fixed-target studies
 - → Pomeron exchange @ high energies; meson exchange at lower

STAR: PR **C96**, 054904 (2017)

Why do we observe coherent production here?

- This is NOT exclusive production
- STAR requires neutrons in both zero degree calorimeter in its trigger
 - ◆ Reaction is AuAu->Au*Au*π⁺π⁻
- Two definitions of coherence:
 - Add amplitudes with a phase factor
 - $\sigma_{coherent} = |\Sigma_i A_i \exp(ikx)|^2$
 - + AA->A*A* V (ρ , ρ ',J/ ψ) still exhibits coherence as long as exp(ikx) ~ 1, i. e. p_T < hbar/b
 - Also requires longitudal coherence -> small momentum transfer
 - Initial and Final nuclear states are the same
 - \bullet $\sigma_{coherent} = |\langle A|V|A\rangle|^2$; target must remain in ground state
 - Required in Good-Walker Paradigm
- UPC data points to first explanation
 - Can be explained by multi-photon exchange, but this does not solve the overall problem.

Multiphoton exchange

Ideally study events with ρ^0 and nothing else

- However, for lead $Z\alpha \sim 0.6$
 - Probability of an additional photon depends on b; can be large
 - Single or mutual dissociation
 - $+ P(b) \sim 1/b^2$
 - Biases impact parameter distributions
- We need to account for these photons
 - n emission from Giant Dipole Resonance
 - n and p from higher resonances
 - Forward π^+ from Δ^+ and higher excitations

- ♦ ρ⁰ w/ neutrons in ZDC are normally treated as subclasses of events.
 - Different impact parameter distributions
- Forward π⁺ can fill-in expected rapidity gaps, and may cause events to be vetoed; this must be corrected

Au*

 $2+\gamma$

Factorization

- Factorization assumes each photon does one thing
- Photons are emitted independently
 - ◆ True for 'low-energy' photons
- Calculate σ in impact-parameter space
 - Unitarity corrections needed for Coulomb excitation

- ♦ drops as # of photons rises
 - \bullet For 2 photons, σ ~ 1/b⁴, for 3 photons 1/b⁶
- Photon energy spectrum hardens with more γ
 - Some tunability
- Photons are linearly polarized along \vec{b}
- STAR has limited data w/o ZDC requirement 101
 - ◆ Agrees with predictions from factorization
 - S. N. Gupta, Phys.Rev. **99**, 1015 (1955)
 - G. Baur et al., Nucl. Phys. A729, 787 (2003)

 $\sigma = \int d^2b P_1(b) P_2(b) \dots$

ALICE ρ^0 analysis for PbPb at 5.02 TeV

- Triggers on events with two tracks in TPC + ITS
 - No ZDCs in trigger
- Like-sign background subtracted
- Incoherent production subtracted using template from STARlight
- Diffrctive minima visible.

ALICE cross-sections for neutrons with ρ^0

- ρ^0 + direct $\pi^+\pi^-$ with p_T < 200 MeV/c
- Multiple models for ρ^0 photoproduction
- Multiple factorization calculations

- Categorize ρ^0 + direct $\pi\pi$ events by number of neutrons
 - ◆ 1n peak from Giant Dipole Resonance is prominent
 - 0n0n, 0nXn and XnXn

Total ρ^0 cross-section

- $d\sigma/dy \sim 550$ mb and $\Delta y \sim 10$ -> $\sigma_{tot} \sim 5.5$ barns
 - Comparable to the hadronic cross-section in PbPb
 - Multiple predictions Glauber calculations, dipole models
 - GKZ model is a Glauber-Gribov model, whereby the dipole may fluctuate to heavier intermediate states as it travels through the target

Coherent photoproduction in the Glauber model

- In the Glauber model, dipoles in a heavy nucleus may multiple scatter (interact many times), but the dipole does not change as it travels through the nucleus. Can also allow other onmass-shell vector mesons.
- In the Glauber Gribov model, the dipole may take on excited virtual intermediate states as it travels through the nucleus.

Glauber VMD
Glauber w/ Generalized VMD
Glauber-Gribov

L. Frankfurt, V. Guzey and M. Strikman, Phys. Lett. B752, 51 (2016)

ALICE cross-sections for neutrons with ρ^0

- ρ^0 + direct $\pi^+\pi^-$ with p_T < 200 MeV/c
- Factorization Calculations
 - STARlight parameterized γA->A* data
 - ♦ N00N different approach to unitarity
 - Used in CCKT curves below
 - General, but not complete agreement

0.4

uncorr syst.

ALICE, JHEP **06**, 035 (2020) SK et al., Comput. Phys. Comm. **212**, 258 (2017) M. Broz et al., Comput. Phys. Comm. **253**, 10781 (2020)

13

The Good-Walker Paradigm

- Coherent photoproduction probes the average nuclear distribution
- Incoherent photoproduction is sensitive to event-by-event changes in the nuclear configuration Ω (positions of nucleons, gluon hot spots, etc).

$$\frac{\mathrm{d}\sigma_{\mathrm{tot}}}{\mathrm{d}t} = \frac{1}{16\pi} \left\langle \left| A(K,\Omega) \right|^2 \right\rangle \qquad \text{Total cross-sections } (\Omega) \text{ average over cross-section } (\|Amplitude\|^2)$$

$$\frac{\mathrm{d}\sigma_{\mathrm{coh}}}{\mathrm{d}t} = \frac{1}{16\pi} \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \qquad \text{Coherent cross-sections average over amplitudes } (\Omega)$$

$$\frac{\mathrm{d}\sigma_{\mathrm{inc}}}{\mathrm{d}t} = \frac{1}{16\pi} \left(\left\langle \left| A(K,\Omega) \right|^2 \right\rangle - \left| \left\langle A(K,\Omega) \right\rangle \right|^2 \right) \quad \text{Incoherent is difference}$$

 Ω is nuclear configuration; K is kinematic factors

This formalism relies on $\sigma_{coherent} = |\langle A|V|A \rangle|^2$; target must remain unexcited

What is the problem?

- STAR and ALICE data show that the presence of nuclear breakup does not preclude coherent emission.
 - As measured by momentum transfer from target
- Even for low-charge emitters like electrons, there is likely a problem
- Excitation leading to photon emission can be very soft, and also very hard to see
 - ◆ ¹⁹⁷Au has a 77 keV excited state with a 1.9 ns lifetime
 - How does such a soft excitation change the kinematics of vector meson production, at a much higher energy scale
 - The struck nucleus can also emit bremsstrahlung photons, down to arbitrarily low energy
 - Cross section is small, but so what?
- Good-Walker must be adjusted to preserve coherent interactions in the presence of soft emission.
 - It is likely that the time scale (hbar/energy) plays a role, but the dividing line is unclear.

15

Incoherent and coherent production and the black disk limit

- Higher photon energies -> lower Bjorken-x
 - ◆ Lower x values -> more gluons, more hotspots
 - The fraction of the proton or ion surface covered with hot spots rises
- The 'black disk limit;' the nucleus acts like an absorptive disk
- Black disks don't fluctuate
 - Incoherent production should disappear.
- High-mass final states require more energetic (larger x) gluons,
 - Slower to disappear
- Extension to nuclei model dependent
 - Black disk limit -> no incoherent production -> no target fragmentation
 - Modifications likely as limit approaches

J. Cepila et al., Nucl. Phys. B934, 330 (2018)

ALICE J/ψ photoproduction

- J/ψ, ψ' in ALICE central
- Coherent and incoherent production separated via p_T spectra
 - Neutrons in ZDC not yet used
 - Protons in proton calorimeters could also be probed

STAR J/ψ photoproduction

- J/ψ -> ee with calorimeter based trigger; no ZDCs required
- J/ψ p_T spectra separated by ZDC neutron content
- Events with neutrons have a larger high p_T tail, consistent with more incoherent production

ρ^0 and J/ ψ photoproduction in dAu at RHIC

- J/ψ see talk by Kong Tu on Friday
- Photon almost always comes from Au
- Deuteron coherent enhancement is modest
- STAR data with 'topological' & topological + ZDC triggers
- Neutron tagged deuteron breakup
- Slopes of dN/dt are quite similar?

10^{2} $dN/dt = A^{*}e^{-bHU}$ $b = 9.199 \pm 0.231 \text{ GeV}^{2}$ 11 0 0.1 0.2 0.3 0.4 0.5 0.6 1tl. (GeV₂)

Neutron tagged

S. Timoshenko for STAR, arXiv:nucl-ex/0501010

ρ⁰ photoproduction in XeXe collisions

- From a 6-hour XeXe run in 2017
- Trigger, analysis similar to PbPb
- Cross-section consistent with Glauber calculations
- From p, Xe, Pb, σ ~ A^{0.96 ± 0.02}
 - ◆ Significant shadowing; σ ~ A^{4/3} in absence of shadowing
- Limited luminosity; neutrons not studied

Excited ρ and $\pi\pi\pi\pi$ final states

- Seen by STAR and ALICE
- Expected to be mixture of ρ '(1450) & ρ ' (1700)
 - These two states can interfere, and predominantly decay to ππππ
- M_{ππππ} ~ 1540 MeV
- Γ ~ 670 MeV
- Significant decays to $\rho^0 \pi \pi$
- Consistent with expected mixture of $\rho'(1450)$ & ρ' (1700)

$\rho' -> \pi \pi$?

- **STAR** and ALICE see a heavy $\pi\pi$ state
 - ♦ STAR: $M_X = 1653 \pm 10 \text{ MeV}$, $\Gamma(X)=164 \pm 15 \text{ MeV}$ (stat. only)
 - ◆ ALICE: M_X = 1725 ± 17 MeV, Γ(X)=143 ± 21MeV
- Width inconsistent with ρ ' (1700) [M=1720 MeV, Γ =250 MeV]
- ρ' branching ratio to pp is small
- Mass, width and abundance may be consistent with $\rho_3(1690)$
 - consistent w/ Br(ρ_3 -> $\pi^+\pi^-$) & previous γp -> ρ_3 -> $\eta \pi^+\pi^-$ data
 - Spin 3 allowed through in-medium wave function modifications?

STAR: DIS2016, ALICE: arXiv:2002.10879

What can we learn about target fragmentation?

- Two highly correlated signatures of incoherent production
 - ◆ Harder p_T spectrum
 - Quantitative measurements require separation of coherent component
 - Usually, look at high p_T where coherent component is small
 - Neutron (and presumably proton and photon) emission
 - Background from nuclear breakup via extra photon exchange
- Extra photon exchange can also produce forward particles
 - ◆ It can be avoided by low-z emitters
 - pA collisions or oxygen
- In pA collisions, photon-from-gold dominates vector meson production
 - ◆ For photon-from-gold, p_{TVM} ~ hbar/R_p
 - ◆ For photon-from-proton, p_{TVM} ~ hbar/R_A
 - Can they be separated well enough?
 - All papers so far have focused on proton (or d) target

Looking Ahead

- At RHIC, the sPHENIX countinous readout DAQ will allow enormous samples of UPC data to be collected, including pA
 - Is there interest and manpower
- At the LHC, ALICE has new TPC endcaps and a continuous readout DAQ.
 - Large UPC samples are expected in Run 3 and Run 4
 - 2 & 4-prong final states, high mass ρ^0 states, helicity studies etc.

			PbPb	ALICE Central barrel		
	σ	All	Central 1	Central 2	Forward 1	Forward 2
Meson		Total	Total	Total	Total 1	Total
$\rho \to \pi^+ \pi^-$	5.2b	68 B	5.5 B	21B	4.9 B	13 B
$\rho' \to \pi^+ \pi^- \pi^+ \pi^-$	730 mb	9.5 B	210 M	2.5 B	190 M	1.2 B
$\phi \to K^+K^-$	0.22b	2.9 B	82 M	490 M	15 M	330 M
$J/\psi o \mu^+\mu^-$	1.0 mb	14 M	1.1 M	5.7 M	600 K	1.6 M
$\psi(2S) \to \mu^+ \mu^-$	$30 \mu \mathrm{b}$	400 K	35 K	180 K	19 K	47 K
$Y(1S) \to \mu^+ \mu^-$	$2.0~\mu \mathrm{b}$	26 K	2.8 K	14 K	880	2.0 K

Oxygen-Oxygen running

- A short (1 nb⁻¹?) oxygen-oxygen run has been proposed for Run 3
- First all-t measurement of incoherent photoproduction on nuclei at collider energies?
 - ◆ Z = 8, additional photon flux is reduced ~ 100 times
 - ◆ ¹6Oxygen is doubly magic, so not easy to dissociate
 - Incoherent:coherent ratio is larger
 - Unlike Pb, neutrons may be associated with incoherent processes

ρ⁰ photoproduction in the very large A limit

- At high enough energy (above 10^{23} eV) photons will interact coherently with bulk matter to produce ρ^0 + direct $\pi\pi$
 - ◆ Coherent interactions with multiple nuclei
- The LPM effect suppresses pair production, so this is the dominant interaction
- The formation length L_f=2 hbar k/M_V² becomes comparable to the interaction length
- $\sigma \sim N_{\text{targets}}^2$, but N_{targets} depends on L_f , so the term cross section loses meaning

26

Conclusions

- Coherent and incoherent photoproduction of vector mesons are an important channel for probing the average nuclear configuration and gluonic/hadronic hot spots respectively.
- The conventional Good-Walker paradigm may need modification to account for accompanying soft interactions.
 - This is also a big issue for the EIC.
- Current experiments can detect neutron emission (and, for ALICE proton emission) accompanying vector meson production
 - Because of extra photon exchange, the nucleon emission data cannot be cleanly related to heavy=ion target fragmentation
 - ◆ Deuteron targets can be studied, but that work is at an early stage.
 - Proton targets can also be studied.
- Looking ahead, the planned LHC oxygen-oxygen run may offer the opportunities to study fragmentation of a light/medium ion.

ALICE PbPb-> J/ ψ at $\sqrt{s_{NN}}$ =5.02 GeV

- p_T spectrum measured out to 2.5 GeV/c
 - ◆ Coherent (Pb), incoherent (single N) & nucleon dissociation seen
- $\sigma_{coherent}$ indicates shadowing ~ 0.8
 - ◆ Consistent with/slightly above EPS09 (&EPPS16) fits to worlds data
 - Smaller errors
- Consistent with leading twist approximation (LTA) & other models

J/ψ rapidity

ALICE: Phys. Lett., 134926 (2019)

Photoproduction in dAu collisions in STAR

- Gold is usually photon emitter; deuteron is usually target
 - ◆ Deuteron coherent enhancement is modest
- Trigger on calorimeter clusters; no ZDC in trigger
- Tag deuteron breakup (incoherent prod) w/ ZDC
 - For large J/ψ p_T, if the neutron were struck, it would miss the ZDC
 - Can tag events where the proton (only?) was stuck
 - Neutron/Noneutron larger at large p_T

See Kong Tu's talk on Friday

